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interfaces be conforming means that the subdomains must
intersect along an entire side or at a corner point. If twoWe present a Chebyshev multidomain method that can solve

systems of hyperbolic equations in conservation form on an un- subdomains intersect along a side, then polynomial approx-
restricted quadrilateral subdivision of a domain. Within each subdo- imation orders must be the same along the interface be-
main the solutions and fluxes are approximated by a staggered- tween them [5]. An example of a two-subdomain conform-
grid Chebyshev method. Thus, the method is unstructured in terms

ing subdivision of a square is shown in Fig. 1a.of the subdomain decomposition, but strongly structured within
The limits imposed by the conforming restriction makethe subdomains. Communication between subdomains is done by

a mortar method in such a way that the method is globally conserva- it impossible to do local refinement by subdividing existing
tive. The method is applied to both linear and nonlinear test prob- subdomains, or by increasing the polynomial order within
lems and spectral accuracy is demonstrated. Q 1996 Academic Press, Inc. selected subdomains. If refinement is necessary within one

subdomain, it is necessary to refine also its neighbors. This
makes the approximation more expensive than necessary,

1. INTRODUCTION since the overall grid is often refined where refinement is
not needed.

To be completely flexible, we would like the method toIn the first paper [1], we introduced a staggered-grid
Chebyshev multidomain method for the solution of inviscid be able to use an arbitrary tiling of a domain by quadrilater-

als. This would be similar to zonal finite difference methodscompressible flow problems. The grid used was analogous
to the fully staggered grids used in some finite difference that have long been in use in the finite difference commu-

nity, e.g. [6]. Since within each subdomain the strong tensorcomputations of compressible flows, e.g. [2]. For the stag-
gered-grid spectral method, the unknowns are approxi- product structure of the spectral approximation would re-

main, the result would be a semi-structured method. Themated by global polynomials of degree N-1 in each space
dimension, which pass through values defined at the flexibility of the semi-structured method would allow com-

monly available block structured grid generation methodsChebyshev–Gauss quadrature points. The fluxes are ap-
proximated by polynomials of degree N that pass through [7] to be used to generate the subdomains.

The semi-structured method can be developed by loos-values defined on the Gauss–Lobatto points. Since the
Gauss points fall strictly between the Lobatto points [3], ening the restriction that the fluxes be continuous across

an interface, giving a nonconforming patching of the sub-the results is a staggering of the solution and flux values.
The staggered grid leads to a simpler and more flexible domains. Figures 1b–1d show three nonconforming topol-

ogies. In the first (Fig. 1b), which we call order refinement,multidomain method than one based on a Lobatto grid
alone, e.g. [4]. It is simpler because subdomain corners are the subdomains intersect along a full side, but the approxi-

mation order changes across the interface. The second,not included in the approximation, so special conditions
do not need to be derived for them. Its flexibility comes Fig. 1c, shows a situation that comes from a subdivision

of the conforming grid, Fig. 1a. Finally, Fig. 1d shows thefrom the fact that only the normal fluxes, not the flux
derivatives, need to be continuous across interfaces where fully nonconforming case, where the interface between two

subdomains is not a full side of either.the subdomains meet, making grid generation less restric-
tive. See [1] for details. Nonconforming spectral domain decomposition approx-

imations for elliptic problems and for the incompressibleThe flexibility of the method presented in [1] is still
limited, however, by the restriction that the calculation of Navier–Stokes equations on grids like those shown in Fig.

1 first appeared in the late 1980s [8–11]. Most notable wasthe unique flux along a subdomain interface requires the
grid points to coincide there. We refer to this approxima- the mortar element method, in which a one-dimensional

polynomial function space called a mortar was definedtion as conforming. In general, the requirement that the
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FIG. 1. Conforming vs nonconforming grids.

along subdomain interfaces. It was with this mortar space c 5 1.4. For two-dimensional problems, z 5 0. For axisym-
metric problems, we interpret x as the axial coordinatethat the patching of the subdomains was accomplished.

Details can be found in the cited references. and y as the radial coordinate, and we set z 5 1. For the
gas-dynamics equations,In this paper, we present a semi-structured method that

uses a nonconforming mortar approximation for the solu-
tion of hyperbolic systems such as the Euler gas-dynamics
equations. Interior to the subdomains, the method uses
the conservative staggered-grid approximation presented

H 5
1
y 3

rv

ruv

rv2

v(re 1 p)
4. (3)in [1]. The result is a fully flexible approximation: Subdo-

mains can be subdivided. Polynomial orders can be ad-
justed within subdomains without affecting neighboring
subdomains. There is no restriction on how the subdomains
tile the full domain, as long as they do not overlap. In the multidomain approximation [4], the region under

The paper begins with a presentation of the equations, consideration is divided into K nonoverlapping subdo-
followed by a review of the staggered-grid conforming mains, VK. Each subdomain is mapped individually onto
approximation. In Section 4, we introduce the mortar the unit square. Under the mapping, Eq. (1) becomes
method for treating the subdomain interfaces. Test prob-
lems, both linear and nonlinear, are presented in Section
5 to show that the approximation is spectrally convergent. ­Q̃

­t
1

­F̃(Q)
­X

1
­G̃(Q)

­Y
5 zH̃, (4a)

Conclusions are drawn in the last section.

2. THE EQUATIONS where Q̃ 5 JQ and

In this paper we consider the approximation of hyper-
F̃ 5 yN

YF 2 xN
YG, G̃ 5 2yN

XF 1 xN
XG, H̃ 5 JHbolic systems in conservative form,

J(X, Y) 5 xN
XyN

Y 2 xN
YyN

X . (4b)
­Q
­t

1
­F
­x

1
­G
­y

5 zH, (1)
3. THE CONFORMING STAGGERED-GRID

APPROXIMATIONwhere Q is the vector of solution unknowns and F(Q) and
G(Q) are the advective flux vectors. For the Euler gas- The staggered-grid approximation [1] computes the solu-
dynamics equations in two space dimensions, tion values, Q̃, and the fluxes F̃ and G̃ on separate grids.

These grids are tensor products of the Lobatto grid, Xj ,
and the Gauss grid, Xj11/2 , mapped onto [0, 1]:

Q 5 3
r

ru

rv

re
4 F 5 3

ru

p 1 ru2

ruv

u(re 1 p)
4 G 5 3

rv

ruv

p 1 rv2

v(re 1 p)
4. (2)

Xj 5
1
2 S1 2 cos S jf

NDD, j 5 0, 1, ..., N,

(5)

Xj11/2 5
1
2 S1 2 cos S 2j 1 1

2N 1 2
fDD, j 5 0, 1, ..., N 2 1.

In (2), re 5 p/(c 2 1) 1 r(u2 1 v2)/2 and we assume
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On the Lobatto and Gauss grids, we define two Lagrange Lobatto points (Xi11/2 , Yj), i 5 0, 1, ..., N 2 1; j 5 0, 1, ...,
N, are are computed asinterpolating polynomials,

G̃i11/2, j 5 2yN
X(Xi11/2 , Yj)F(Q(Xi11/2 , Yj))

(12)lj(j) 5 p
N

i50
i?j

S j 2 Xi

Xj 2 Xi
D, (6)

1 xN
X(Xi11/2 , Yj)G(Q(Xi11/2 , Yj)).

The heart of the multidomain approximation is how thehj11/2(j) 5 p
N21

i50
i?j

S j 2 Xi11/2

Xj11/2 2 Xi11/2
D. (7)

interfaces between subdomains are treated. In the con-
forming approximation (Fig. 1a) the interface points be-
tween two neighboring subdomains coincide. However, the

We see that lj(x) [ PN(x), and hj11/2(j) [ PN21 , where PN two solutions at the interface need not, since they are
is the space of polynomials of degree less than or equal computed independently from the interpolant through the
to N. Gauss/Gauss points in each subdomain. From these two

The mapping of each subdomain onto the unit square values, however, a unique flux is computed so that the
is done by a static isoparametric transformation. Let the characteristic propagation of waves is accounted for. For
vector function g(s), 0 # s # 1, define a parametric curve. linear problems, we use a flux vector splitting. For the
The polynomial of degree N that interpolates g at the Euler gas-dynamics equations, we use a Roe solver [9] with
Lobatto points is the entropy fix to compute the normal flux at the interface

from these two values. Inflow, outflow, and wall boundaries
can be treated by specifying the boundary conditions as

G(s) 5 ON
j50

g(sj)lj(s). (8)
the extra solution value in the Riemann solver. Details can
be found in [1].

Once the fluxes are computed, we form the semi-discreteFour such polynomial curves, Gm(s), m 5 1, 2, 3, 4, counted
approximation for the solution on the Gauss/Gauss grid.counterclockwise, bound each subdomain. As in [1], we
For each subdomainmap each subdomain onto the unit square by the linear

blending formula,
dQ̃
dt Ui11/2, j11/2

1 F­F̃
­X

1
­G̃
­YGi11/2, j11/2xN(X, Y) 5 (1 2 Y)G1(X) 1 YG3(X) 1 (1 2 X)G4(Y)

1 XG2(Y) 2 x1(1 2 X)(1 2 Y) (9)
5 zH̃ui11/2, j11/2 5 i 5 0, 1, ..., N 2 1,

j 5 0, 1, ..., N 2 1,2 x2X(1 2 Y) 2 x3XY 2 x4(1 2 X)Y,

(13)

where the xj’s represent the locations of the corners of the where the derivatives, defined as
subdomain, counted counterclockwise.

The solution unknowns are approximated at (Xi11/2 ,
Yj11/2), i, j 5 0, 1, ..., N 2 1, which we will call the Gauss/ ­F̃

­XUi11/2, j11/2
5 ON

n50
F̃n, j11/2l9n(Xi11/2)

Gauss points. The interpolant through these unknowns is
a polynomial in PN21,N21 5 PN21 ^ PN21 ,

­G̃
­YUi11/2, j11/2

5 ON
m50

G̃i11/2,ml9m(Yj11/2)

(14)

Q̃(X, Y) 5 ON21

i50
ON21

j50
Q̃i11/2, j11/2hi11/2(X)hi11/2(Y). (10)

are computed by matrix multiplication. Equation (13) is
then integrated in time by a two-level low-storage Runge–

The horizontal fluxes are approximated at the Lobatto/ Kutta scheme.
Gauss points (Xi , Yj11/2), i 5 0, 1, ..., N; j 5 0, 1, ...,
N 2 1, computed from the polynomial (10) 4. A NONCONFORMING MORTAR APPROXIMATION

The only differences between the conforming and theF̃i, j11/2 5 yN
Y(Xi , Yj11/2)F(Q(Xi , Yj11/2))

(11) nonconforming approximations come from how the fluxes
2 xN

Y(Xi , Yj11/2)G(Q(Xi , Yj11/2)). are to be computed along the interfaces between subdo-
mains. In the conforming case (Fig. 1a), there are two
solution values at each interface point from which a singleFinally, the vertical fluxes are approximated at the Gauss/
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flux can be computed directly. In the nonconforming cases two necessary conditions to be satisfied by the treatment
of the interfaces. The first requirement is that the approxi-(Figs. 1c–d), however, the grid lines do not necessarily

match along the interface, so that point-by-point transfer mation retains global conservation. This will determine the
choice of the projection operator from the mortar backof information cannot be made from a subdomain to its

neighbor. onto the subdomain faces. The second requirement we will
term the outflow condition.We have chosen to implement the transfer of informa-

tion between subdomains by a mortar method [9]. The The outflow condition arises from the fact that, in a
hyperbolic problem, waves should pass through an inter-basic idea is that the mortar (the ‘‘cement’’) connects

neighboring subdomains (the ‘‘bricks’’). In our method, face unaffected by downwind contributions. If the problem
is scalar, for instance, this means that of the two solutionsthe two-dimensional subdomains communicate only with

an intermediate one-dimensional construct, called a mor- at an interface, the solution from the subdomain from
which the characteristic comes (the ‘‘upwind side’’) is used.tar, not with neighboring subdomains (Fig. 2). In practice,

a projection of the solution values is made from the contrib- To affect this choice with a mortar, it is necessary that
the solution along the upwind face be unchanged afteruting subdomain faces onto a mortar. It is on the mortar,

and not on the subdomains themselves, that the Riemann projecting onto the mortar and then back onto the face.
If this is true, we say that the approximation satisfies theproblem is solved to give a unique flux. The computed flux

is then projected back onto the subdomain faces. outflow condition.
Both the outflow condition and conservation can beThe use of a mortar has several advantages over direct

subdomain-to-subdomain communication of solution val- satisfied by a least squares matching of the face and mortar
solutions. Least squares projection can be viewed as requir-ues. First, each mortar will communicate with at most two

subdomain faces. The flux computations on a mortar can ing that any approximation errors be orthogonal to the
polynomial space on which the solution is being projected.be made independently of the subdomains that contribute

to it. Finally, the work of computing the interface fluxes Equivalently, it can be viewed as truncation, or padding
by zeros, of the orthogonal polynomial representation ofis not duplicated.

The projections from the subdomain faces to the mortars the function. Thus, it ensures that the patching does not
introduce errors into modes that are represented on theand back must be carefully chosen. We will use a least

squares matching of the polynomials. It is possible to sim- faces or the mortars.
We will describe mortar approximations for the threeply interpolate from the grid points on a subdomain face

to a mortar and vice versa, since the polynomial approxi- nonconforming topologies shown in Fig. 1. The first two
topologies occur when a conforming topology is locallymations are already specified for the spectral method by

Eq. (10). Either one can be performed computationally by refined. The first means only that the polynomial order
along a subdomain face differs from that of its neighbor.matrix multiplication, although the matrix coefficients are

different. For elliptic problems, however, it was shown [5, The second situation arises when a subdomain itself is
subdivided without subdividing the neighbor. The last to-11] that a least square projection was necessary to retain

spectral convergence globally. pology is the most general one and does not come from
an initially conforming grid.The conditions for determining the solutions of the hy-

perbolic system along the mortar are different from those In the discussion that follows, we will consider only the
approximation of a scalar problemin the elliptic case [11]. Since we are computing the solution

to the system of equations in conservation form, we set

­Q̃
­t

1
­F̃(Q)

­X
1

­G̃(Q)
­Y

5 0. (15)

The extension to a system is direct. The only difference in
the case of a system is that along the mortar a characteristic
resolution of the two solutions must be made to compute
the flux. That mortar flux calculation is identical to the
conforming case [1].

4.1. Order Refinement

The simplest case of a nonconforming approximation
(Fig. 1b) occurs when two subdomains meet along a full
side, but the polynomial orders of the solution on eitherFIG. 2. Diagram of mortar communication between three subdo-

mains that subdivide a square. side of the interface are not the same. A schematic diagram
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of two contributing sides of subdomains ‘‘L’’ and ‘‘R’’ and include both PML21 and PMR21 . So as not to require an ex-
cessive amount of work to compute the projections, wethe mortar is shown in Fig. 3. For this topology, the mortar,

denoted by J, extends the full length of both sides of the choose J 5 max(M L, M R).
To compute the flux for each subdomain face, a three-two subdomains. Note that the approximation needs to

consider only the two subdomains whose faces coincide, step procedure is used. First, the two solutions U L,R(j) are
projected onto the mortar space by projections PLRJ andsince the staggered grid approximation does not include

subdomain corners. PRRJ to give fL,R. The two values on the mortar are then
used to compute a unique mortar flux, which is evaluatedIn the general case, the subdomain interfaces and the

mortar between them will be defined through Eq. (8) by as if the mortar is a conforming interface. Finally, the
mortar flux is projected back onto the subdomain faces bypolynomial approximations, G, to the boundary curve, g.

To be exactly coincident, the three polynomial approxima- the projections PJRL and PJRR. These projection operators
are chose so that the approximation is globally conservativetions must be identical. This condition automatically holds

for the conforming approximation, but not for the noncon- and satisfies the outflow condition.
forming. The restriction of coincidence means that the

4.1.1. Subdomain R Mortar Projection. A diagram oforder of the curves must be chosen to be no more than
the projection of a solution onto a mortar for the orderthe lowest order of the contributing subdomains. Since
refinement case is shown in Fig. 3a. Since we have chosenthe subdomain interfaces are artificial interior boundaries
the order of the polynomial approximation on the mortar(often straight lines), we have the freedom to make this re-
(the ‘‘mortar order’’) to be equal to the maximum orderstriction.
of the polynomials on the two contributing subdomains,Only the solution along the subdomain faces must be
one of the projection operators is the identity. For conve-transferred to the mortar. So define the solutions along
nience, we will assume that J 5 M R so that fR(j) 5 U R(j)the faces as U L

j11/2 5 QL(1, Yj11/2), j 5 0, 1, ..., ML 2 1,
and PRRJ 5 I.and U R

j11/2 5 QR(0, Yj11/2), j 5 0, 1, ..., MR 2 1. The polyno-
For the projection of the lower order space onto themials along the faces that interpolate these values are

mortar, we use the unweighted L2 projection. Thus, we
ask that the approximation along the mortar satisfy

U L(j) 5 OML
21

j50
U L

j11/2hL
j11/2(j) [ PML21 ,

(16) min
fL[PJ

E1

0
(fL 2 U L)2 dj (18a)

U R(j) 5 OMR
21

j50
U R

j11/2hR
j11/2(j) [ PMR21 ,

⇔ E1

0
(fL 2 U L)hJ

m11/2(j) dd 5 0, m 5 0, 1, ..., J 2 1.

(18b)where j [ [0, 1] is the local subdomain coordinate. On
the mortar itself, we represent the two solutions as the

Substitution of the definitions (16) and (17) into (18b) givespolynomials fL and fR defined by

fL,R(j) 5 OJ21

j50
fL,R

j11/2hJ
j11/2(j) [ PJ21 . (17) ONL

21

j50
U L

j11/2FE1

0
hL

j11/2hJ
m11/2 djG

To be able to satisfy the outflow condition, the polynomial 5 OJ21

j50
fL

j11/2FE1

0
hJ

j11/2 hJ
m11/2 djG,

order of the mortar space must be sufficiently large to

m 5 0, 1, ..., J 2 1.

(19)

Now, define the matrix elements

S L
mj 5 E1

0
hL

j11/2hJ
m11/2 dj

(20)

Mmj 5 E1

0
hL

j11/2hJ
m11/2 dj

so that (19) becomes SLUL 5 MF, where U is the vector
of discrete solution values along the face and F is theFIG. 3. Schematic of order refinement: (a) subdomain to mortar pro-

jections; (b) mortar to subdomain projections. vector of solution values along the mortar. The integrals
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in (20) can be computed exactly by a Clenshaw–Curtis when a side is subdivided into two. The refinement to three
or more subdomains is a simple extension of this re-quadrature [3] on 2J 1 2 Lobatto points. We then define

the projection operator by finement.
When a subdomain is refined as shown in Fig. 1c, there

are two possible choices for the mortars (Fig. 4). In theF 5 PLRJUL 5 M21SLUL. (21)
first, two mortars coincide with the ‘‘short’’ faces of V2

and V3. The second choice uses a single mortar that coin-
The matrix PRRJ can be computed once at the beginning cides with the ‘‘long’’ face of V1.
of the computation and stored for use as needed. We choose the topology in Fig. 4a, since it is the one

Since the computation of the projection operator re- that can satisfy the outflow condition. In the second case,
quires the inversion of the matrix M, it is important to the projection from V2 and V3 onto the mortar is a projec-
consider the conditioning of that system. We find numeri- tion of a piecewise polynomial space onto a single polyno-
cally that the growth of the condition number in the maxi- mial space. The former is the larger space, since it includes
mum norm is weak with matrix size, k P 1.36J 0.79. For the approximations that are discontinuous at the point where
maximal polynomial orders that we typically use (J P 20),

V2 and V3 meet. The outflow condition requires that the
k P 15. projection of face values from V2 and V3 onto a mortar,

and the subsequent projection back onto the faces returns4.1.2. Mortar R Subdomain Projection. Once the mor-
the original polynomial functions. This is clearly impossibletar functions (17) are computed, the normal flux is calcu-
in case (4b), since the projection back onto the faces returnslated as described in [1]. This flux must then be projected
a continuous function. By using two mortars, however, asback onto the subdomains (Fig. 3b). Let C [ PJ21 be the
shown in Fig. 4a, it is possible to construct projections thatmortar contravariant flux and let F̃ L and F̃ R be the two
recover the original polynomials on all three subdomains.subdomain fluxes to be computed from it. Since M R 5 J,
This situation differs from the mortar element method forwe have immediately that F̃ R 5 C. To get the flux on the
elliptic problems [11], which require stronger regularityleft, we require that
conditions than hyperbolic problems.

As before, the curves for the subdomain surfaces andE1

0
(F̃ L 2 C)hL

m11/2 dj 5 0, m 5 1, 2, ..., M L 2 1, (22) mortars must coincide. In the case of subdivision, this can
be accomplished by choosing the interface to be a polyno-
mial whose order is the lowest of the orders, three polyno-i.e., that the projection error is orthogonal to PML21 . Then,
mials being used along the faces of the contributing inter-in matrix form,
faces. This polynomial should be defined along the ‘‘long’’
face of V1. Again, we have the freedom to do this when

MLF̃L 5 SL C, (23) defining subdomain boundaries.
We also define as before the solution approximations

along a face aswhere

U 1(j) 5 OM1
21

j50
U 1

j11/2h1
j11/2(j) [ PM121M L

m, j 5 E1

0
hL

j11/2hL
m11/2 dj, m, j 5 0, 1, ..., M L 2 1

U 2(j) 5 OM2
21

j50
U 2

j11/2h2
j11/2(j) [ PM221 (25)SL

m, j 5 E1

0
hJ

j11/2hL
m11/2 dj, Hm 5 0, 1, ..., M L 2 1,

j 5 0, 1, ..., J 2 1.

U 3(j) 5 OM3
21

j50
U 3

j11/2h3
j11/2(j) [ PM321As before, these integrals can be computed exactly by

quadrature. From (23) the projection of the flux onto the
subdomain face is

F̃ L 5 PJRLC 5 (ML)21SC. (24)

4.2. Subdomain Refinement

The next level of flexibility allows subdomains be subdi-
FIG. 4. Two mortar configurations for subdomain refinement.vided locally. For simplicity, we consider only the case
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for local subdomain coordinates j [ [0, 1]. We also define identity, and a simple copy of the flux from the mortar to
the face can be made.four mortar functions

The projection from the mortars to a subdomain is a
little more complicated in the case where two mortars

f1,(L,R)(z) 5 OJ1
21

j50
f1(L,R)

j11/2 hJ
1

j11/2(z) [ PJ121
(26)

contribute to a subdomain, as is the case for V1 in Fig. 4a.
The piecewise polynomial that represents the fluxes along
the mortars, possibly discontinuous, must be used to com-

f2,(L,R)(z) 5 OJ2
21

j50
f2(L,R)

j11/2 hJ
2

j11/2(z) [ PJ221 pute the continuous polynomial along the face. As before,
we seek the best polynomial on the face that approximates
the mortar solutions in the least squares sense. Posing the

which are functions of the local mortar coordinate, z [ projection problem in this way means that there is no
[0, 1]. Finally, we define the variables ok and sk to be ambiguity if a grid point falls at the intersection of the two
the offset and the scale of a mortar with respect to the mortars, unlike the situation that would result if pointwise
subdomain Vk that contributes to it. Thus, for z [ [0, 1], interpolation were used.
j k 5 ok 1 skz. To obtain the least squares projection, we seek the flux

The orders of the mortar polynomials must be chosen that satisfies
sufficiently high so that the outflow condition can be satis-
fied. This means that the mortar order must be at least as
large as the largest subdomain order of all contributing Eo1

0
(F̃(j) 2 CJ

2
(j))hj11/2(j) dj

subdomains. Thus, we choose J 1 5 max(M 1, M 2) and
J 2 5 max(M 1, M 3). 1 E1

o1 (F̃(j) 2 CJ
1
(j))hj11/2(j) dj, j 5 1, 2, ..., M 2 1,

4.2.1. Subdomain R Mortar Projections. To compute
5 0, (30)the mortar functions (26), we also use the unweighted L2

projection. Thus, we seek polynomials on the two mortars
and we definethat best approximate the polynomial along the contribut-

ing face. For each mortar J and each subdomain contribu-
tor V, this means that we require

C 55CJ
1 Sj 2 o1

s 1 D , o11 # j # 1,

CJ
2 Sj 2 o2

s 2 D , 0 # j # o12.

(31)E1

0
(f(z) 2 U(o 1 sz))hJ

j11/2 dz 5 0, j 5 0, 1, ..., J. (27)

Then the vector of the solution values along the mortar
can be computed by

If we now define

F 5 PVRJU 5 M21SU, (28)
S(k)

i, j 5 sk E1

0
hJ

i11/2hk
j11/2(ok 1 skz) dz, (32a)

where, this time

Mij 5 E1

0
hi11/2(j)hk11/2(j) dj, (32b)

Mm, j 5 E1

0
hJ

j11/2hJ
m11/2 dz m, j 5 0, 1, ..., J 2 1, (29a)

we can write
SV

m, j 5 E1

0
hJ

j11/2hV
m11/2(o 1 sz) dz,

m 5 0, 1, ..., M 2 1,
j 5 0, 1, ..., J 2 1.

(29b) F̃1 5 O2
k51

P(k)C(k), (33)

Note that the matrices in (20) are just special cases of those
in (29) with o 5 0 and s 5 1. where P(k) 5 M21S(k) is the projection matrix.

4.2.2. Mortar R Subdomain Projections. Once the flux
4.3. Fully Nonconforming Interfaces

is computed on the mortars, as if the approximation is
conforming, it is projected back onto the subdomain faces. The final topology, shown in Fig. 1d, is characterized by

subdomains whose faces only partially overlap. In orderThe projections pJ
1RV

2
and pJ

2RV
3

are exactly as described
by (22)–(24). If the mortar order and the subdomain poly- to satisfy the outflow condition, we choose the mortars to

cover the intersections of two subdomain faces, as shownnomial order are the same, the projection simplifies to the
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in Fig. 5. We note again that this choice is different than The outflow condition is also satisfied by our choice of
projections. Again, it is simplest to show this for orderthe choice one must make in the elliptic case [9], where

the concept of a supermortar was introduced to give the refinement. In terms of the projection operators, the out-
flow condition means that PJRLPLRJ 5 I. If we call F 5solution sufficient regularity.

In practice, this situation is handled as in subdivision. PLRJU and U* 5 PJRLF this is true if U 5 U*. By con-
structionThe interfaces are defined so that they coincide. The mor-

tar orders are chosen to be the maximum of the orders
of the polynomials of the contributing subdomains. The (U 2 F, v) 5 0 ;v [ PJ21 (36a)
computation of the mortar functions is done by Eq. (28)
for all the subdomains, since none of the projection opera- and
tors is the identity. Once the mortar flux is computed along
each mortar, it is projected back onto the subdomain faces (U* 2 F, w) 5 0 ;w [ PML21 , PJ21 . (36b)
by (33), where the upper limit on the sum is equal to the
number of mortars that contribute to the subdomain face. Then (U 2 F, w) 5 0 ;w [ PML21 , from which we see

that (U 2 U*, w) 5 0 ;w [ PML21 . The result follows
4.4. Properties of the Nonconforming Approximation from the fact that U 2 U* [ PML21 .

For the subdomain refinement case, satisfaction of theThe use of the unweighted L2 projections gives the mor-
outflow condition requires that the projection operatorstar approximation two desired properties: The approxima-
satisfy the relationstion is globally conservative and the outflow condition is

satisfied. If, in addition, the subdomain faces and mortars
coincide, the method remains free-stream preserving. PJ

1RV
1
PV

1RJ
1
1 PJ

2RV
1
PV

1RJ
2
5 I

It is simplest to show conservation for order refinement. PJ
1RV

2
PV

2RJ
1
5 I (37)

In that case, we need only to show that PJ
2RV

3
PV

3RJ
2
5 I

E1

0
(F̃ R 2 F̃ L) d 5 0. (34) which can be shown by arguments similar to that above.

Satisfaction of the outflow condition leads us to conclude
that there should be no degradation of the maximum timeThis is because the integration of Eq. (13) with z 5 0 over
step that can be used in the nonconforming case comparedall subdomains leaves only integrals of the flux over the
to that required in an equivalent conforming case. Essen-boundaries. Conservation follows if the interface flux con-
tially, along a subdomain face inflow characteristics aretributions cancel. By design,
specified as boundary conditions, while the outflow charac-
teristics are unaffected. The time step, then, is determined(F̃ L 2 C, v) 5 0 ;v [ PML21 (35a)
by the approximation of the equations within the subdo-
mains. This is exactly the situation that occurs in the con-(F̃ R 2 C, w) 5 0 ;w [ PMR21 , (35b)
forming case. Our experience is consistent with this expec-
tation.where (u, v) 5 e1

0 uv dj. Since 1 [ PML21 , PMR21 5 PJ21 ,
Finally, the method remains free-stream preserving, pro-the result follows. A similar argument can be constructed

vided that the subdomain interfaces coincide exactly.for subdomain refinement and fully nonconforming inter-
Again, this is most easily argued in the case of order re-faces. We remark that (34) would not hold if the mortar
finement.fluxes are merely interpolated to the subdomain faces from

To see how the method can preserve a constant free-the mortar.
stream, consider a curved interface with the topology
shown in Fig. 1b. For uniform flow, with Q constant so
that F(Q) 5 G(Q) 5 1, the projection of the solution from
the faces to the mortar by (21) is exact. The mortar flux
computed pointwise along the mortar then defines a poly-
nomial

C 5 y(Y)Y 2 x(Y)Y (38)

of degree less than or equal to J. By design, polynomials
x(Y) and y(Y) are of low enough order to be identical

FIG. 5. Mortar topology for a fully nonconforming approximation. along both subdomain faces and along the mortar. Thus,
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the projection (24) of the mortar flux, C, onto the faces is 7. Repeat Steps 1–6 until done.
also exact, so it returns the same values as would have The mortar approximation adds little to the cost of the
been computed locally on the subdomain faces. On each calculation of the subdomain fluxes as N gets large, pro-
subdomain, then, Eq. (13) becomes vided that the projection matrices are computed and stored

at the beginning of a computation. The bulk of the compu-
tations occur in matrix multiplication operations, whichdQ̃

dt Ui11/2, j11/2
1 F ­

­X
(yN

Y 2 xN
Y ) 1

­

­Y
(2yN

X 1 xN
X )U

i11/2, j11/2 require O(N 2) multiplications, where N is the order of the
matrix. Assuming that the same number of points is used

5 0. (39) in each space dimension, the work required to compute
the interior fluxes for the Euler gas-dynamics equations is

The situation is now identical to the conforming case. Since O(N 2(16N 1 72)). The subdomain faces are one space
xN [ PN,N on a given subdomain, dimension less and the work required to do step (3) of the

algorithm above is O(N(16N 1 132)). Thus, the work
required to treat the interfaces relative to the interior work­

­X S­xN

­YDi11/2, j11/2
5 ON

k,l50
xN

k,l l9k(Xi11/2)l9l (Yj11/2)

(40)
is asymptotically O(1/N).

5. EXAMPLES
5

­

­Y S­xN

­XD
i11/2, j11/2

In this section, we use the semi-structured algorithm to
compute solutions to both linear and nonlinear hyperbolic

so that problems. We first solve a two-variable linear system using
nonconforming topologies and compare the convergence
to the convergence using alternative conforming grids. WedQ̃

dt Ui11/2, j11/2
5 0, H i 5 0, 1, ..., N 2 1,

j 5 0, 1, ..., N 2 1.
(41) then present an example where the solution is localized,

and show that the computational cost for the same error
can be reduced significantly by using the nonconforming4.5. Mortar Algorithm
interface treatment.

The algorithm for the nonconforming approximation is We also solve three problems using the Euler gas-dy-
the same as the conforming one, except for the manner in namics equations. The first problem is that of subsonic
which the interface fluxes are computed. At the start of a flow from a point source, for which there is an exact solu-
calculation, after the grid connections, mortar positions, tion. The convergence rates of conforming and alternative
offsets, and scales are computed, the projection matrices nonconforming grids are compared. We then show that
are computed and stored. Then at each stage of the time exponential convergence is obtained when solving the
integration, we use the following algorithm, based on the problem on a complex, multiply connected subdomain to-
staggered grid method of [1]: pology. The second problem is a steady subsonic flow over

a circular bump. We show that exponential convergence
ALGORITHM I. (Non-conforming staggered grid).

of the entropy is obtained for both conforming and noncon-
forming approximations. The nonconforming approxima-1. Interpolate the Gauss/Gauss point solution values
tion, however, takes only half the computer time for theto the Gauss/Lobatto and the Lobatto/Gauss points.
same accuracy. Finally, as an example of a transonic flow2. Compute the interior point fluxes F and G from the
problem we solve flow in an axisymmetric converging–interpolated values.
diverging nozzle. The computed results for that problem

3. Compute the interface fluxes: are compared to experimental data.
(a) Project the interface solution values onto the

5.1. Linear Model Problemmortars.
(b) Compute the mortar fluxes. We begin by considering steady solutions to the system
(c) Project the mortar fluxes back onto the subdo-

main faces. Qt 1 Fx 1 Gy 5 S(x, y), (42a)
4. Compute the boundary fluxes by applying the

whereboundary conditions.

5. Compute spatial derivatives at the Gauss/Gauss
points.

Q 5Fu

v
G , F 5F3v 2 u

3u 2 v
G , G 5F2u 1 4v

4u 1 2v
G . (42b)

6. Update the solution at the Gauss/Gauss points.
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FIG. 7. Comparison of L2 errors for conforming and nonconform-
FIG. 6. Comparison of conforming and nonconforming errors for

ing grids.
order refinement.

The source term is chosen so that the exact steady solu- solution of (42) on the unit square where the source terms
tion is are chosen so that the steady solution is

u 5 esin(2fx)sin(2fy) u 5 e215((x21)1(y21))

v 5 e xy. v 5 e250(x2
1y2).

Exponential convergence is observed for all three non- In this problem, the solution variations are concentrated
conforming grid topologies shown in Fig. 1b. First, we in the upper left and lower right corners as shown in Fig.
consider order refinement on an equal subdivision of the 9a. We solve the problem on two grids, also shown in Fig.
rectangle [0, 2] 3 [0, 1]. Figure 6 compares the L2 errors 9. The nonconforming grid, which has increased resolution
of a conforming grid with two subdomains with those of only where needed, has 44% of the number of grid points
a nonconforming approximation. In both cases we observe of the conforming grid when N 5 10.
exponential convergence. For order refinement alone, we Figure 10 compares the convergence of the error for the
would expect the error to be dominated by the lowest
order approximation, and this is the case.

Exponential convergence is also observed when a subdo-
main is subdivided. Figure 7 compares the error of an equal
four-subdomain conforming decomposition of the unit
square with a subdivided approximation. As before, we
observe that the error is dominated by the N th-order poly-
nomial approximation.

Finally, we consider a fully nonconforming subdivision
of the unit square, shown in Fig. 8. In this case, we choose
a subdivision that is between two conforming approxima-
tions in its resolution. The first conforming subdivision
divides the square into four equal subdomains. The second
subdivides the vertical direction into thirds and the hori-
zontal in half. Again, we observe exponential decay of the
error, and that error lies between the errors of the two
conforming approximations.

One of the main reasons to use a nonconforming grid
is to compute efficiently solutions where local refinement

FIG. 8. Comparison of conforming and fully nonconforming errors.of the grid is needed. As an example, we compute the
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FIG. 9. Solution and grids for (38) where local refinement is needed: FIG. 11. Diffuser solution and nonconforming and conforming grids:
(a) solutions; (b) conforming grid; (c) nonconforming grid. (a) Mach contours; (b) nonconforming grid; (c) conforming grid.

two grids shown in Fig. 9. We find that the errors for both The first geometry represents steady flow in an ex-
grids are the same to one digit. However, at N 5 10, the panding two-dimensional duct with straight walls (Fig. 11).
computational cost of the nonconforming grid computation The lower wall was chosen to be the line y 5 0 and the
is 46% of the cost of the conforming grid computation. upper wall the line y 5 x tan(f/6). The exact solution
Since, at best, we would expect the nonconforming grid to chosen was the one that takes on the Mach number M 5
take 44% of the time of the conforming one, we see that the 0.6 at the lower left corner. We compute this flow on the
overhead due to the mortar projections is only about 5%. two grids shown in Fig. 11. An examination of the error

using a single domain approximation indicates that most
5.2. Euler Gas-Dynamics Equations of the contribution of the error occurs near the lower left

corner. Thus, we set up the nonconforming grid as shown5.2.1. Point Source Flow. We now consider the solution
in Fig. 11b. For comparison, we also compute the solutionof the flow of a steady, irrotational gas exiting from a point,
on the conforming grid shown in Fig. 11c. The errors forwhich can be solved exactly by a hodograph transformation
the two grids are plotted in Fig. 12 and are the same to[13]. The streamlines are radial and the level curves of the
one digit.Mach number, pressure, and density are circles centered

Exponential convergence can be obtained on complexon the source. We will compute this flow in two geometries.
geometries, too, if the solution is smooth. In Fig. 13, weThe first geometry represents flow in an expanding duct,
show the Mach contours and grid for the solution of thewhere two streamlines are chosen as walls of the duct. The
point source flow in a rectangular domain with three cut-second geometry is that of a rectangular region with three
out holes. The point source was placed at the center ofcut-out circles.
the bottom circle. This grid has fully nonconforming subdo-

FIG. 10. Convergence of linear model problem (38) on the two grids
shown in Fig. 9. FIG. 12. Convergence of the density error for the two grids of Fig. 11.
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FIG. 13. Mach contours and multiply connected grid for the point
source flow.

main interfaces. The exact solution was used to compute
the boundary conditions on all the boundaries. Figure 14
shows that the error converges exponentially with N.

FIG. 15. Pressure contours and grids for M 5 0.3 flow over a circular
bump. The pressure contours for the conforming grid are plotted with5.2.2. Subsonic Flow over a Circular Bump. Our next
dashed lines; the nonconforming solution is plotted with solid lines.example is the solution of a Mach 0.3 subsonic flow over

a circular bump. This flow was computed on two grid topol-
ogies, shown in Fig. 15. A wall boundary condition was

errors. Figure 16 shows the exponential convergence ofspecified along the bottom. At the left, right, and top
the entropy error for the two grids shown in Fig. 15.boundaries, the uniform free-stream condition was speci-

For N 5 10, the nonconforming grid in Fig. 15 has 50%fied as the external input to the boundary Riemann prob-
of the number of degrees of freedom of the conforminglems. Initially, the free-stream solution was specified every-
grid. We find that the CPU time for the nonconformingwhere, and then the boundary conditions were imposed.
approximation to get to steady state is 44% of the timeA comparison of the pressure computed on the conforming
required by the conforming one, so the work required byand nonconforming grids is also shown on Fig. 15.
the mortar projections is negligible.This problem does not have an exact solution. However,

since the free-stream is irrotational and homentropic, the 5.2.3. Transonic Flow in a Converging–Diverging Noz-
entropy must remain constant everywhere. That this is zle. Our final example is that of a transonic flow in an
not true computationally is due to spatial approximation

FIG. 16. Convergence of the entropy for the two grids shown in
Fig. 15.FIG. 14. Convergence of the density for the grid in Fig. 13.
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FIG. 17. Nozzle shape and grid for transonic flow computation.

FIG. 19. Wall pressure of the converging–diverging nozzle.
axisymmetric converging diverging nozzle. We use the noz-
zle of Cuffel et al. [14]. The nozzle has a converging section
with half angle of 458 and a diverging section of 158. The

faces the approximation’s polynomial orders had to be theexperimental tests were done in air with a stagnation tem-
same. This made it impossible to subdivide a subdomainperature of 540 R and a stagnation pressure of 70 psia.
or to increase locally the polynomial order as necessary toThe nozzle geometry and grid are shown in Fig. 17. We
resolve a local feature in the solution.have increased the resolution in the neighborhood of noz-

In this paper, we have described a semi-structuredzle wall curvature singularities by subdivision of a conform-
method that uses the staggered grid scheme interior toing grid (see [1]). Boundary conditions and scaling were
subdomains. It relaxes the restriction that the fluxes betreated as in Ref. [1].
continuous at subdomain interfaces and allows for noncon-Results computed for the nozzle are shown in Figs. 18–
forming interfaces. This makes it possible to use a general20. Contours of the Mach number are compared to the
quadrilateral tiling of a computational domain. Subdo-experimentally determined positions in Fig. 18. Wall values
mains can be subdivided as necessary. Within each subdo-of the pressure and Mach number are shown in Figs. 19
main the polynomial order can be set independently of itsand 20 for different subdomain resolutions.
neighbors. More generally, subdomains need intersect only
partially along a side.

6. SUMMARY
In the semi-structured version, the interfaces are treated

by a mortar method. The solutions along subdomain facesIt was difficult to do local refinement of the grid with
are first projected onto a one-dimensional construct calledthe original staggered-grid multidomain approximation [1].

That method required subdomains to intersect either along
a full side or at a single point. In addition, along adjoining

FIG. 18. Computed and measured (symbols) Mach contours in the
nozzle. FIG. 20. Wall Mach number for the converging–diverging nozzle.
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